
开平面C上的亚纯函数与完备极小曲面的Gauss映射
Meromorphic Functions on C and the Gauss Map of Complete Minimal Surfaces
设r:D → R3确定了以等温参数表示的极小曲面M,其中D是全平面R2的开子区域,那么极小曲面的Gauss映射g(z)是D上的亚纯函数.Xavier与Chao提出了一个尚未解决的问题:任意给定区域D⊂C上的亚纯函数g(z),它是否是某完备极小曲面的Gauss映射?本文证明了若开平面C上的亚纯函数g(z)的零点列或极点列的收敛指数小于1/2,则g(z)一定是某完备极小曲面的Gauss映射.
Let r:D → R3 be a minimal surface M with isothermal parameter, where D is a domain in R2, then the Gauss map of minimal surface is a meromorphic function on D. Supposing g(z) to be an arbitrary meromorphic function on D ⊂ C, whether there exists a complete minimal surface M, such that g(z) is the Gauss map of M, which is proposed by Xavier and Chao is still to be unsolved. In this paper, we prove that for the meromorphic function g(z) on C with the property that either the exponent of convergence of zeros or the exponent of convergence of poles is less than 1/2, g(z) must be the Gauss map of some complete minimal surface.
[1] Ahlfors L. V., Complex Analysis, McGraw-Hill Education, New York, 1979.
[2] Boas R. P. Jr., Entire Functions, Academic Press, New York, 1954.
[3] Fujimoto H., On the number of exceptional values of the gauss map of minimal surface, Journal of the Mathematical Society of Japan, 1988, 40(2):235-247.
[4] Fujimoto H., Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm, Vieweg, Wiesbaden, 1993.
[5] Chen W. H., Minimal Surfaces (in Chinese), Dalian University of Technology Press, Dalian, 2011.
[6] Hayman W. K., Meromorphic Functions, Oxford University Press, Oxford, 1964.
[7] Lagrange J. L., Oeuvres de Lagrange, Readex Microprint, New York, 1970.
[8] Meusnier J. B., Mémoire sur la courbure des surfaces, Mém. des savans étrangers, 10(lu 1776):477-510.
[9] Nitsche J. C. C., Lectures on Minimal Surfaces, Cambridge University Press, Cambridge, 1989.
[10] Osserman R., Proof of a conjecture of Nirenberg, Communications on Pure & Applied Mathematics, 1959, 12(2):229-232.
[11] Qiao J. Y., Stable sets for iterations of entire functions, Acta Math. Sin., Chin. Ser., 1994, 37(5):702-708.
[12] Weierstrass K., Monatsber, Berlin Akad, Berlin, 1866.
[13] Xavier F., The Gauss map of a complete nonflat minimal surface cannot omit 7 points of the sphere, Annals of Mathematics, 1981, 113(1):211-214.
[14] Xavier F., Chao X. L., Lectures on Modern Minimal Surfaces, Higher Education Press, Beijing, 2011.
[15] Zhang N. Y., Chen H. H., Topics in Complex Function Theory, Peking University Press, Beijing, 1995.
国家自然科学基金项目资助(11761081)
/
〈 |
|
〉 |