有限CN-p-群

石化国, 韩章家, 郭鹏飞, 张隆辉

数学学报 ›› 2019, Vol. 62 ›› Issue (2) : 211-218.

PDF(442 KB)
PDF(442 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (2) : 211-218. DOI: 10.12386/A2019sxxb0018
论文

有限CN-p-群

    石化国1, 韩章家2, 郭鹏飞3, 张隆辉4
作者信息 +

On Finite CN-p-groups

    Hua Guo SHI1, Zhang Jia HAN2, Peng Fei GUO3, Long Hui ZHANG4
Author information +
文章历史 +

摘要

每个子群都C-正规的有限群称为CN-群.本文首先给出二元生成的CN-p-群的完全分类.在此基础上得到CN-p-群的结构: 当p为奇素数时,有限群GCN-p-群当且仅当G的每个元都平凡地作用在Φ(G)上;有限群GCN-2-群当且仅当对任意给定的aG, 都有对任意g ∈ Φ(G),ga=g或者对任意g ∈ Φ(G),ga=g-1.最后给出两个CN-p-群的直积是CN-p-群的判定条件.

Abstract

A finite group G is called a CN-group if every subgroup H of G is C-normal in G. In this paper, we will give first a complete classification of the 2-generator CN-p-groups. Then by applying the structure of the 2-generator CN-p-groups, we obtain the following results: If p is a odd prime, then G is a CN-p-group if and only if Φ(G)≤ Z(G). If p = 2, then G is a CN-p-group if and only if for any given aG and for any g ∈ Φ(G), we have ga=g or ga=g-1. We also get some criteria of CN-p-groups in terms of direct product of CN-p-groups.

关键词

有限群 / C-正规子群 / CN-p-群 / 幂自同构

Key words

finite group / C-normal subgroup / CN-p-group / power automorphism

引用本文

导出引用
石化国, 韩章家, 郭鹏飞, 张隆辉. 有限CN-p-群. 数学学报, 2019, 62(2): 211-218 https://doi.org/10.12386/A2019sxxb0018
Hua Guo SHI, Zhang Jia HAN, Peng Fei GUO, Long Hui ZHANG. On Finite CN-p-groups. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 211-218 https://doi.org/10.12386/A2019sxxb0018

参考文献

[1] Li C., Wang Y., Xie Z., Su N., Finite groups in which every subgroup is c-normal (in Chinese), Science in China: Mathematics, 2013, 43(1): 25–32.
[2] Miller G. A., Moreno H. C., Non-Abelian groups in which every subgroup is abelian, Trans. Amer Math. Soc., 1903, 4: 398–404.
[3] Robinson D. J. S., A Course in the Theory of Groups, Springer, New York, 1993.
[4] Wang L., The in uence of permutable properties of subgroups on the structure of finite groups (in Chinese), PH.D. Thesis of Zhongshan University, Guangzhou, 2006.
[5] Wang Y., C-normality of groups and its properties, J. Algebra, 1996, 180(3): 954–965.
[6] Xu M., An Introduction to Finite Groups Vol. 1(2nd Edition) (in Chinese), Science Publishing, Beijing, 2001.

基金

国家自然科学基金资助项目(11661031);四川省教育厅科学研究基金资助项目(18ZA0434)

PDF(442 KB)

340

Accesses

0

Citation

Detail

段落导航
相关文章

/